2019 年 2 月 21 日
来自消费者和 5G 无线网络的压力正促使有线电视 (CATV) 提供商比过去更积极地谋求发展。目前,有线电视行业正有条不紊地制定下一代有线电视生态系统的新标准,其中包括全双工 (FDX) DOCSIS 3.1,它承诺在现有的光纤同轴 (HFC) 混合系统的上游和下游提供 10 Gbps 数据传输速率。
但是,要实现 FDX,需要启动高度线性的设备,以支持数字预失真 (DPD),包括 75Ω 有线电视开关。本博客探索了 DPD 如何在有线电视光纤节点上工作,助您了解如何为自己的应用选择合适的开关。
分布式接入架构 (DAA)、光纤深度和远程 PHY/远程 MAC PHY 正将某些功能从主控端移动到更靠近用户的光纤节点。但是,如果不针对 DOCSIS 3.1 FDX 架构进行设计,就不可能在 DAA 上达到 10 Gbps 的上游和下游数据传输速率,也无法保有与 5G 蜂窝基础设施竞争的能力。
在之前的博客中,我们讨论了实施全双工 DOCSIS 所面临的一些 RF 挑战。为了启用 FDX,两个最关键的要素包括:
相关博客文章:全双工 DOCSIS 3.1 助力实现 10 Gbps 有线电视网络
简而言之,功率放大器需要提高效率,达到 76.8 dBmV 复合输出功率,且具备更出色的 ACPR(线性度),才能最终满足 FDX 对于 MER 的规范要求。尽管功率放大器硬件实现了大部分的线性度改进,DPD 在这方面的贡献较小,但这部分贡献却不可或缺。
在更高水平上,DPD 可模仿并预测放大器的非线性行为,并在功率放大器的输入端注入反向信号,从而减少放大器的非线性行为,解决整体的电流消耗问题。下图展示了带 DPD 和 不带 DPD 的功率放大器的非线性特性。
对于有线电视光纤节点,节点中的数模转换器 (DAC) 电路使用软件,通过耦合器测量每个功率放大器输出,以此确定哪个功率放大器的线性度最差。然后电路会基于最差的测量值来计算 DPD 算法,并从下游将校正结果发送给所有功率放大器。线性度最差的设备得到最大程度的校正,最终结果就是,多台设备比在没有采用 DPD 算法时更出色地运行。
在典型的四端口节点中,链中 RF 放大器的功耗约为 85W,其中 72W 来自于最后一个功率倍增器 PA。使用 DPD 可对每个功率放大器进行线性化处理,并将总功耗降低多达 20%。
在线缆光纤节点中启用 DPD 需要 75‑Ω 的开关。何时应选择 SPST、SPDT 或 SP4T 开关?这完全由节点的几何形状(物理布局)决定。场中的节点在盒子两侧可能都有输出,其轨迹可能无法进入单个 SP4T 开关。
对于 DPD,不存在唯一正确的设计方法。最终的设计方法要以客户的应用、布局、偏好以及性能需求和成本为基础决定。
术语表
下方的框图展示了在四端口光纤节点中实施 DPD 的三种不同设计方法:
除了开关和掷的数量之外,为这些 DPD 节点应用选择正确的开关类型也很重要。您可以选择吸收式开关或反射式开关。它们的主要区别如下:
吸收式开关:
反射式开关:
最终选择哪种,取决于成本与性能。如果功率处理和较低的插入损耗对于设计非常关键,则选择反射式开关。如果更高的隔离度非常重要,且设计可以处理额外的插入损耗和更高成本,请选择吸收式开关。
实施 DPD 时,需要更多的设计资源和更多成本来购买额外的组件及开关。但是,其优点大于缺点,因为您可以获得自适应系数;自我校准、更加线性的 PA 输出;电流消耗减少,最重要的是,实现了 FDX。
还有其它想让Qorvo专家讨论的话题吗? 将您的建议通过电子邮件发送给Qorvo 博客团队,它可能会出现在即将发布的文章中。