2024 年 12 月 16 日

    应对5G复杂性:理解射频前端设计中的“功率等级2”

    我们上一次讨论蜂窝通信功率等级2(PC2),还是在2017年的文章《功率等级2:您需要知道的一切》中。自那时起,伴随更多频段的增加和愈发复杂的移动设备出现,蜂窝通信市场已发生巨大变化。2017年还仅停留在概念阶段的折叠屏手机、5G新空口(NR),以及采用载波聚合(CA)技术的100MHz带宽信号,如今都已成为现实。

    随着4G和5G的部署,3GPP的最新规范已将PC2引入FDD频段,更高的发射功率水平也由此带来了与之相关的全新挑战。下面,就让我们回顾一下PC2的基础知识,并深入探讨PC2如何随着这些新的5G部署而演进。

    功率等级基础知识

    在TS36.101和TS38.101-1等3GPP规范中,发射功率通常指的是移动设备在给定信道带宽上传导输出端口所提供的额定功率。这些传导输出端口与在实际手机操作中用于信号发射和接收的真实天线相关联。3GPP针对用户设备(UE)的最大传导发射功率定义了功率等级类别,以确保在不同网络条件下的性能。

    射频(RF)规范中的要求通常会根据不同频率范围(FR)分别定义。本规范版本中,用于NR操作的频率范围如表1所示。

    表1,3GPP对频率范围的定义

     

    探索相关工具和资源

    请访问Qorvo设计中心,获取内容丰富的视频、博客文章、白皮书,和工具等。

    在本文的讨论中,我们将仅涉及FR1中的功率等级。FR1中定义了四个不同的功率等级;每个等级都针对4G LTE和5G NR频谱内特定设备的要求和使用场景进行了定制(包括PC1、1.5、2、3和4)。所有FR1频段默认支持功率等级3,但其它等级的支持情况因频段而异。

    • PC1——面向固定无线、车载应用,以及公共安全等高功率场景。FR1 PC1针对部分选定频段,最大功率约为31dBm。
    • PC1.5——针对如n41、n77和n79等频段,满足智能手机和FWA设备的需求。此类UE的最大输出功率为29dBm,在2Tx配置下实现。
    • PC2——面向NR TDD频段内CA和高功率UE,最大发射功率为26dBm。
    • PC3——除非另有规定,否则此等级为默认功率等级;在所有频段上的最大发射功率为23dBm。
      • PC3针对移动手持设备优化了功率效率。
      • 如最大功率额定值配置为23dBm或更低,或UE未提供最大上行链路功率等级额定值,则UE将使用PC3运行。

    下表提供了3GPP标准组织规定的FR1频段及其最大功率额定值的组合。下表仅供参考;请通过表下方的3GPP链接查阅最新版本的规范。

    表2,3GPP规定的FR1功率等级额定值(来源:3gpp.org;获取最新规范,请点击此处

    深入探讨功率等级2

    我们在之前的文章中曾提及,PC2作为4G LTE的一项新标准于2016年12月推出,旨在支持高功率用户设备(HPUE),并增强2.5GHz LTE TDD的全球覆盖。文中指出,FR1内的高频信号由于路径损耗较大,相比低频信号在同一功率水平下的传播距离更短。为解决这一路径损耗问题而不增设昂贵的信号塔,并实现预期的网络覆盖能力,PC2应运而生。此外,这些较高频率需要穿透建筑物以支持室内通信;同时,PC2还能在更理想的条件下提高基站接收到的信号强度,使网络能够获得更好的信噪比(SNR),并启用更高阶的调制方式,以提高数据吞吐量。

    在此之前,即2016年12月之前的标准——功率等级3(PC3),为保持与旧技术的兼容性,将B41等频段的上行链路功率限制在23dBm。如下图1所示,功率等级2允许输出功率达到26dBm——扩大了之前由功率等级3定义的最大覆盖范围。

    图1,网络中功率等级2与3的输出功率水平

    尽管功率有所提升,但HPUE手机仍必须遵守美国联邦通信委员会(FCC)和其它监管机构设定的特定吸收率(SAR)限制,以确保辐射水平安全(SAR值反映了无线手持设备用户头部、手部等部位吸收到的相对射频能量)。对于TDD系统,PC2传输通过限制占空比来减少平均吸收的能量。随着FDD PC2的引入,发射和接收操作不再存在双工占空比,因此必须对PC2传输实施时间限制,以确保随时间推移所吸收的平均能量保持在可接受水平。

    从RF前端模块的角度来看,分析表明,将TDD频段功率提升至26dBm可以在相关发射占空比下延长电池寿命,改善小区边缘覆盖,并在更典型的运行条件下提高吞吐量。预计FDD PC2的加入将进一步优化网络运行并延长用户电池寿命。

    PC2的射频挑战

    对于支持更高频率的前端RF来说,支持PC2功率等级面临一些挑战。首先是效率问题;其直接关系到电池寿命。更高的功率要求低损耗的后级功率放大器(PA)阵容,包括性能更高的声学滤波器。这些滤波器必须在提供足够带外(OOB)抑制的同时,保持低插入损耗;此外还必须解决发射链路中的谐波和其它杂散信号生成问题,以满足手机级要求;因为这些信号的水平通常会随着功率的提高而增加。同样,在高功率、高VSWR条件下,如果设计不当,滤波器和功率放大器都更容易损坏,因此高功率等级下的坚固性也是一个关注点。

    FDD PC2系统不仅需要应对所有TDD PC2面临的挑战,还有更多额外考量。随着功率水平的提高,如果接收频段内的发射泄漏和发射噪声等RF参数未得到妥善管理,接收灵敏度可能会受到影响。如果多路复用器在一个特定频段内为了达到PC3发射功率条件下的接收灵敏度目标而需要60dB的发射到接收隔离度,那么可以合理推测,在发射功率高出3dB的情况下,可能需要63dB的隔离度。此外,由于功率水平在相对较长的时间内保持较高,提高效率和采用额外的热管理方法也极为关键。

    射频设计工程师必须尽量减少匹配损耗,优化系统链路预算,以满足 PC2 的性能要求。Qorvo 采用高度集成的模块、天线复用器、优质开关技术和高性能射频滤波器来实现这一目标。Qorvo 的 RF Flex™ 和 RF Fusion™ 等集成射频模块将滤波器、开关和功率放大器集成在一起,实现了直接匹配,并将 Tx 和 Rx 通路的匹配损耗降低了 0.5 dB。这种降低有助于实现 26 dBm 的输出目标,而不会使功率放大器过载。

    图2,Qorvo射频融合模块

    体声波(BAW)技术以其高Q值、低杂散信号、陡峭的带缘,和卓越的热性能,带来了出色的表现,成为满足5G PC2要求、降低高功率水平下系统热量的理想选择。随着5G设备变得愈发复杂,高效的设计对于维持性能举足轻重。

    图3,Qorvo BAW滤波器优势

    Qorvo的BAW滤波器,无论是分立器件还是模块内集成,都凭借其卓越的衰减性能和低插入损耗,在解决共存问题方面发挥着关键作用;这对于避免干扰和优化B41频段链路预算至关重要。此外,针对5G频段n77、n78和n79的滤波器得益于优化的耦合设计,在PC2载波聚合(CA)应用中设计多路复用器时同样扮演了不可或缺的角色。

    随着RF前端复杂性不断增加,工程师面临着在满足多个CA和区域模式要求的同时最小化天线数量的难题。此类问题可以通过使用集成到天线复用器中的开关、滤波器以及高性能天线调谐解决方案来解决。这些组件简化天线设计,将插入损耗降至最低,在降低复杂性的同时保持最佳的共存性能。随着PC2被引入更多频段,应对这些挑战对于下一代设计变得更加重要。

    结语

    在日新月异的RF前端设计中,频段数量的增加、频率的提升,以及载波聚合技术的扩展,无一不持续带来严峻考验。尽管功率等级2颇具挑战性,但RF工程师与专业RF供应商携手合作,仍能有效应对。诸如Qorvo的BAW滤波器等高性能技术,以及RF Flex™RF Fusion™等集成设计方法,是助力手机设计人员更快速实现高效与成功的关键工具。这些先进解决方案不仅减少了匹配损耗、优化了链路预算,还解决了复杂问题,确保即使在PC2所需的高功率水平下,系统也能保持稳健性能。总体而言,Qorvo在RF模块集成领域的创新,对于满足4G和5G日益复杂设备的严苛要求方面发挥着至关重要的作用。

    此外,也欢迎您访问我们的Qorvo 设计中心,获取更多相关信息,以及内容丰富的视频、博客文章、白皮书,和工具等资源。如需相关支持,请访问Qorvo.com或联系我们的技术支持团队

    关于作者

    我们的作者在面向前沿技术开发及优化电源方案方面拥有丰富的专业技术知识。立足对客户需求和行业趋势的深刻理解,他们与Qorvo的设计团队紧密合作,推动创新,并提供支持行业领先产品的尖端解决方案。

    感谢参与本文撰写的主要贡献者:Dennis Mahoney(系统与架构技术总监)、Phil Warder(首席设计工程师)和David Schnaufer(集团技术市场经理);他们的宝贵支持为我们的读者带来专业知识和反映行业趋势的最新信息。

     

    还有其它想让Qorvo专家讨论的话题吗? 将您的建议通过电子邮件发送给Qorvo 博客团队,它可能会出现在即将发布的文章中。

    Explore the Qorvo Blog

    关于作者

    Qorvo 博客团队

    一部分是技术,一部分是内容,一部分是战略——我们的小团队致力于连接您与Qorvo的最强大脑,为您带来有益、及时的见解。