2019 年 10 月 15 日
Strategy Analytics 预测新兴 5G 网络将呈现爆炸式增长。他们预测,2018 年至 2024 年间部署的新基站数量将会翻一番。在 5G 网络快速增长的推动下,到 2024 年,部署的新基站和升级的无线基站设备数量将达到近 940 万。
这些 5G 基站中,许多都将采用大规模 MIMO 天线。由于采用大规模 MIMO 天线,这些新 5G 网络架构推动蜂窝网络外缘能够始终相连。在本文中,我们将介绍与大规模 MIMO 基站中的 RF 前端相关的所有基础知识。
大规模 MIMO 使用多个基站天线与多位用户通信,在相控阵自适应技术中采用了波束成型技术。大规模 MIMO 在不加剧小区间协调的设计复杂性的情况下提高容量。通过使用大规模 MIMO,可以形成波束,确保几乎在任何时候,单个波束只会支持一位用户。因此,为每位用户提供无干扰、高容量的基站连接。
大规模 MIMO 技术采用大型天线阵列(一般由 16、32 或 64 个阵列组件组成)来实现空间复用(参见下图)。空间复用在相同的资源模块中提供多个并行的数据流。通过扩展虚拟信道的总数,它可以在不额外增加塔站和频谱的情况下提升容量和数据速率。
图 1.大规模 MIMO 的优势
5G 新无线电 (NR) 规范第一阶段发布的 3GPP 版本 15 已于 2018 年 6 月发布。规范重点说明使用 5G NR 非独立 (NSA) 和独立 (SA) 标准的移动部署。NSA 是运营商转向 SA 的过渡步骤(参见图 2)。NSA 利用 LTE 锚频段进行控制,并使用 5G NR 频段提供更快的数据速率。NSA 让运营商无需构建新的 5G 核心网络,可以直接提供 5G 数据速率。因为我们尚处于 5G NR 设计的开始阶段,所以大多数基站应用都是 NSA。但随着 5G 不断演进,采用 SA 类型系统部署之后,这种情况将会改变。
图 2.迈向独立 5G 之路。
基站组件供应商和制造商面临着一项重大挑战,即提供各区域所需的最小存货单位 (SKU) 数量。这些在更高频率范围内碎片化的频段组合迫使供应商和制造商提供多样化的产品组合(参见下图)。此外,频率和带宽需求的增加又进一步加大了 RF 半导体技术提供商的设计难度。例如,功率放大器 (PA) 的增益和效率相互关联,发射路径中目前采用的硅 LDMOS 功率技术会对其有影响。因此,系统制造商开始从硅 LDMOS 转而采用氮化镓 (GaN),后者在平均工作功率水平和宽带宽下可实现高达 60% 的效率,因此非常适合大规模 MIMO 基站系统。
那么,5G 大规模 MIMO 基站系统需要什么样的 RF 前端 (RFFE) 组件呢?高线性、高效率、低功耗的集成前端组件。为了从规范的角度进行分析,制造商希望半导体供应商能优化以下参数,以满足其系统要求。
半导体供应商必须优化上述参数,这样大规模 MIMO 系统制造商才更容易实现规格要求。下列系统规格与上述 RF 前端半导体参数相关。
5G 大规模 MIMO 基站已经开始建设,运营商将会继续扩大部署。全球各地需要不同频率和功率水平的产品,所以供应商需要在多样化的产品组合供应链中进行选择。由于大规模 MIMO 系统对参数的要求很严格,需要更高的频率范围和带宽,所以必须采用新技术。如下表所示,Qorvo 提供目前市场上最丰富的 5G 大规模 MIMO 产品组合。我们也使用最适合各种大规模 MIMO 应用的技术来创造产品。Qorvo 不仅提供覆盖 3.5 GHz 以上所有频率的产品,这些产品还采用 GaN、GaAs 和滤波器体声波技术 (BAW),具备出色性能。
6 GHz 以下的 5G 大规模 MIMO 和毫米波基础设施设计已经投入使用。GaN、GaAs 和 BAW 等技术均有助于运营商和基站 OEM 实现 5G 大规模 MIMO 目标,并将覆盖范围扩展到网络边缘。身为消费者,我们才刚刚见识到大规模 MIMO 和 5G 功能的冰山一角。
还有其它想让Qorvo专家讨论的话题吗? 将您的建议通过电子邮件发送给Qorvo 博客团队,它可能会出现在即将发布的文章中。