2019 年 11 月 18 日
您的工作是否涉及有源/无源微电子电路和设计?如果涉及,您可能非常了解高温会对这些器件产生哪些不利影响。高工作温度会导致性能下降,服务寿命缩短。因此,工程师应始终考虑热因素的影响,以消除器件设计中的潜在问题。
在人们眼中,氮化镓 (GaN) 仍然是一种相对较新的半导体技术。因为性能出色,它被越来越多地用于以前主要采用传统技术的市场领域。GaN 超越现有技术的一个领域是热管理。简而言之,GaN 比其他半导体技术“更能散热”。
这篇博客文章和视频名为“了解 GaN 热分析”,就如何采用 GaN 实现合理的热设计提供一些实用技巧。
对于半导体的可靠性,部分是通过估算器件的最高信道温度 (TCH,MAX),进而估算器件的生命周期来确定的。这些数值是通过测量热阻、功耗和热传递,并据此建模来获取的。
红外 (IR) 显微镜使用广泛,通过寻找半导体器件中的热点来确定故障位置。但是,空间分辨率限制、反射面成像困难和芯片的表面结构(空气桥)限制了红外成像在测量 GaN 信道温度时的作用。此外,即使通过红外测试获得了完全准确的数值,但实际的最高信道温度实际上是器件栅级下方某个位置的值。
尽管使用红外技术存在局限性,它仍然是测量器件温度的常用技术。Qorvo 除了红外成像外,还采取了几个额外的步骤来准确确定 GaN TCH,MAX。我们将 3D 热模型(也称为有限元分析 (FEA))技术与显微拉曼热成像技术结合起来使用,然后将得出的结果与 RF 测试和红外成像结果比较。采用这个组合数据集,我们为封装器件开发了一个 FEA 模型,以提供准确的 TCH,MAX 值。
(1) 找到器件的红外表面 TCH
(2) 确定 FEA 器件的平均无故障时间
我们建议您观看视频教程短片“了解 GaN 热分析”,查看应用笔记 GaN 器件信道温度、热阻和可靠性估值,以便更详细地了解这个主题。
还有其它想让Qorvo专家讨论的话题吗? 将您的建议通过电子邮件发送给Qorvo 博客团队,它可能会出现在即将发布的文章中。